Abstract

Born-Oppenheimer theory is based on the separation in timescales between the nuclear and electron dynamics implied by the electron-to-nuclear mass ratio. This makes it naturally fit into a multiscale analysis. It is shown that a fully dynamical Born-Oppenheimer theory follows from a multiscale ansatz on the wave function and a Taylor expansion in the mass ratio. Allowing for a larger spatial scale of electron motion yields an understanding of boson, fermion, and more complex excitations that involve quasi-particles with an effective mass not equal to that of the electron. The theory involves a unified asymptotic expansion in a mass and length scale ratio, and preserves all many-body effects via accounting for the full strength of the interparticle forces. A novel mean-field theory emerges based on the fact that long-scale migration allows each electron to interact with many others on the space-time scale relevant to the coarse-grained equation. Implications for computational methods and applications to quantum nanosystems such as quantum dots, nanowires, superconducting nanoparticles, and liquid He droplets are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call