Abstract

Chromatin, the complex assembly of DNA and associated proteins, plays a pivotal role in orchestrating various genomic functions. To aid our understanding of the principles underlying chromatin organization, we introduce Hi-C metainference, a Bayesian approach that integrates Hi-C contact frequencies into multiscale prior models of chromatin. This approach combines both bottom-up (the physics-based prior) and top-down (the data-driven posterior) strategies to characterize the 3D organization of a target genomic locus. We first demonstrate the capability of this method to accurately reconstruct the structural ensemble and the dynamics of a system from contact information. We then apply the approach to investigate the Sox2, Pou5f1, and Nanog loci of mouse embryonic stem cells using a bottom-up chromatin model at 1 kb resolution. We observe that the studied loci are conformationally heterogeneous and organized as crumpled globules, favoring contacts between distant enhancers and promoters. Using nucleosome-resolution simulations, we then reveal how the Nanog gene is functionally organized across the multiple scales of chromatin. At the local level, we identify diverse tetranucleosome folding motifs with a characteristic distribution along the genome, predominantly open at cis-regulatory elements and compact in between. At the larger scale, we find that enhancer-promoter contacts are driven by the transient condensation of chromatin into compact domains stabilized by extensive internucleosome interactions. Overall, this work highlights the condensed, but dynamic nature of chromatin in vivo, contributing to a deeper understanding of gene structure-function relationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.