Abstract

Improving biodiversity conservation in fragmented agricultural landscapes has become an important global issue. Vegetation at the patch and landscape-scale is important for species occupancy and diversity, yet few previous studies have explored multi-scale associations between vegetation and community assemblages. Here, we investigated how patch and landscape-scale vegetation cover structure woodland bird communities. We asked: (1) How is the bird community associated with the vegetation structure of woodland patches and the amount of vegetation cover in the surrounding landscape? (2) Do species of conservation concern respond to woodland vegetation structure and surrounding vegetation cover differently to other species in the community? And (3) Can the relationships between the bird community and the woodland vegetation structure and surrounding vegetation cover be explained by the ecological traits of the species comprising the bird community? We studied 103 woodland patches (0.5 - 53.8 ha) over two time periods across a large (6,800 km2) agricultural region in southeastern Australia. We found that both patch vegetation and surrounding woody vegetation cover were important for structuring the bird community, and that these relationships were consistent over time. In particular, the occurrence of mistletoe within the patches and high values of woody vegetation cover within 1,000 ha and 10,000 ha were important, especially for bird species of conservation concern. We found that the majority of these species displayed similar, positive responses to patch and landscape vegetation attributes. We also found that these relationships were related to the foraging and nesting traits of the bird community. Our findings suggest that management strategies to increase both remnant vegetation quality and the cover of surrounding woody vegetation in fragmented agricultural landscapes may lead to improved conservation of bird communities.

Highlights

  • Agricultural landscapes worldwide share a common history of native vegetation modification due to intensive land use, including tropical forests of Brazil [1], sagebrush-steppe landscapes of northwest America [2], semi-natural grasslands of northern Europe [3], and temperate eucalypt-dominated woodlands of Australia [4]

  • In 2002 and 2008 combined, we found that woodland patch leaf litter cover, canopy depth, hollow bearing tree density, mistletoe occurrence, patch size, and surrounding woody vegetation cover at all three scales (100 ha, 1,000 ha and 10,000 ha) significantly affected community composition (Fig. 2A, Table 3)

  • In 2002, we found that woodland patch dieback, mistletoe occurrence, and surrounding woody vegetation cover at the 1,000 ha and 10,000 ha scales significantly affected community composition (Fig. 2B, Table 3)

Read more

Summary

Introduction

Agricultural landscapes worldwide share a common history of native vegetation modification due to intensive land use, including tropical forests of Brazil [1], sagebrush-steppe landscapes of northwest America [2], semi-natural grasslands of northern Europe [3], and temperate eucalypt-dominated woodlands of Australia [4]. Within such landscapes, the intensification and expansion of agriculture has led to widespread loss and fragmentation of native vegetation [5]. From a conservation perspective, community-level studies need to build on those of single species and species diversity within the same agricultural region, to integrate policy and management recommendations

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call