Abstract

Casein finds application as an eco-friendly adhesive for paper, wood, glass, etc. Casein being a protein can undergo conformational and microstructural changes during various processing steps involved in interfacial bonding. This study aims at understanding the multiscale contributions of these changes in casein to its adhesion to cellulose pressboards. Investigations spanning from molecular structure to macroscopic adhesion characteristics have been used in this work. The lap shear strength of casein bonded cellulose pressboards is found to increase with the increase in casein concentration. It was observed from Fourier transform infrared spectroscopy (FTIR) investigations along with microscopy and rheological studies that casein dispersions result in more α-helical conformations during the preconcentration process of casein dispersions. This results in increased hydrophobicity of the casein particles/aggregates, which in turn affects the wetting characteristics and the adhesion behavior. Casein compositions lacking α-helices were found to enhance the bonding strength of casein with cellulose. The present study shows that the adhesion between casein and microporous cellulose substrate has contributions at the multiscale originating from the polar-polar interactions of casein and cellulose molecules, conformational changes in the protein structure of casein during drying, microstructure of casein particles in the dispersion, and the microporous nature of the cellulose boards. These interactions at multiple scales can be tuned to suit different adhesive applications using casein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call