Abstract

Road detection and centerline extraction from very high-resolution (VHR) remote sensing imagery are of great significance in various practical applications. Road detection and centerline extraction operations depend on each other, to a certain extent. The road detection constrains the appearance of the centerline, and the centerline enhances the linear features of the road detection. However, most of the previous works have addressed these two tasks separately and have not considered the symbiotic relationship between them, making it difficult to obtain smooth and complete roads. In this paper, a novel multi-scale and multi-task deep learning framework for automatic road extraction (MSMT-RE) is proposed to build the relationship between them and simultaneously complete the road detection and centerline extraction tasks. U-Net is selected as the basic network for multi-task learning due to its strong ability to preserve spatial details. Multi-scale feature integration is also applied in the framework to increase the robustness of the feature extraction. Meanwhile, an adaptive loss function is introduced to solve the problems of roads taking up a small percentage of the training samples, and the fact that the positive samples of the two tasks are unbalanced. Finally, experiments were conducted on two public road data sets and two large images from Google Earth, and the proposed framework was compared with other state-of-the-art deep learning-based road extraction methods, both quantitatively and qualitatively. The proposed approach outperformed all the compared methods, confirming its advantages in automatic road extraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.