Abstract

Unconventional reservoir resources are important to supplement energy consumption and maintain the balance of supply and demand in the oil and gas market. However, due to the complex geological conditions, it is a significant challenge to develop unconventional reservoirs efficiently and economically. At present, unconventional reservoirs are exten-sively studied, covering a wide range of areas, with special attention to the multiscale characterization of pore structures and fracture networks, description of complex fluid transport mechanisms, mathematical modeling of flow properties, and coupled analysis with multiphysics fields. This work briefly describes the multiscale and multiphysics influences on fluids in unconventional reservoirs, and the modeling and simulation work conducted to analyze them, with the aim to provide some theoretical basis for enhanced recovery from these geo-energy resources. The present article also aims to enhance the community’s knowledge of other potential utilizations associated with some unconventional reservoirs, specially related to environmentally-driven projects, including permanent greenhouse gas storage and cyclic underground energy storage. Cited as: Cai, J., Wood, D. A., Hajibeygi, H., Iglauer, S. Multiscale and multiphysics influences on fluids in unconventional reservoirs: Modeling and simulation. Advances in Geo-Energy Research, 2022, 6(2): 91-94. https://doi.org/10.46690/ager.2022.02.01

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.