Abstract

AbstractHigh strength concrete (HSC) with superior strength advantage has been gaining widespread attention and engineering endorsement in recent years. For a better understanding of the mechanical responses and failure mechanisms of HSC, a novel three‐dimensional (3D) mesoscale model considering the meso‐structural features of concrete was proposed in this paper. First, a series of uniaxial compressive tests were conducted to investigate the compressive properties of HSC specimens with a strength of 80–90 MPa. After that, a 3D three‐phase mesoscale model consisting of mortar, coarse aggregate, and the interfacial transitional zone (ITZ) between them, was developed to perform the mesoscopic simulations of HSC. Then, systematic analysis and discussions on the compressive properties of HSC were presented in terms of the stress–strain curves, compressive strengths/toughness, failure patterns, cracking process, etc. Results indicate that HSC exhibited obvious brittle failure characteristics, and its strength was significantly related to the water‐to‐cement ratio and mineral admixture. At meso‐level, the cracking behaviors of mortar and ITZ phases were well modeled using the developed mesoscale model. Additionally, it was found that the cracking behavior of HSC was significantly associated with the ITZ characteristics. The developed mesoscale modeling approach has been proven to simulate and investigate concrete's compressive properties in a reliable manner, and can be applied further to the property analysis of concrete materials and structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.