Abstract
The paper is concerned with the multiscale analysis of the scattering problem for three-dimensional time-dependent Maxwell’s equations in heterogeneous materials. Firstly, an exact transparent boundary condition is developed to reduce the scattering problem into an initial–boundary value problem in heterogeneous materials. Secondly, the multiscale asymptotic expansions of the solution for the reduced problem and an explicit convergence rate for the approximate solutions are presented. Finally, a multiscale Crank–Nicolson mixed finite element method is proposed where the first-order approximation of the Silver–Müller radiation condition is utilized to truncate infinite domain problems. Numerical experiments are then carried out to validate the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.