Abstract

The design of vaccines against highly mutable pathogens, such as HIV and influenza, requires a detailed understanding of how the adaptive immune system responds to encountering multiple variant antigens (Ags). Here, we describe a multiscale model of B cell receptor (BCR) affinity maturation that employs actual BCR nucleotide sequences and treats BCR/Ag interactions in atomistic detail. We apply the model to simulate the maturation of a broadly neutralizing Ab (bnAb) against HIV. Starting from a germline precursor sequence of the VRC01 anti-HIV Ab, we simulate BCR evolution in response to different vaccination protocols and different Ags, which were previously designed by us. The simulation results provide qualitative guidelines for future vaccine design and reveal unique insights into bnAb evolution against the CD4 binding site of HIV. Our model makes possible direct comparisons of simulated BCR populations with results of deep sequencing data, which will be explored in future applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.