Abstract

ABSTRACT The formation mechanism of massive stars remains one of the main open problems in astrophysics, in particular the relationship between the mass of the most massive stars and that of the cores in which they form. Numerical simulations of the formation and evolution of molecular clouds, within which dense cores and stars form self-consistently, show that the core mass increases in time, and also that the most massive stars tend to appear later than lower mass stars. We present an idealized model that incorporates accretion onto the cores as well as onto the stars, in which the core mass growth is regulated by a ‘gravitational choking’ mechanism that does not involve any form of support. This process is of purely gravitational origin, and causes some of the mass accreted onto cores to stagnate there, rather than being transferred to the stars. In addition, we estimate the mass of the most massive allowed star before its photoionizing radiation is capable of overcoming the accretion flow. This model constitutes a proof of concept for the simultaneous growth of the gas reservoir and the stellar mass, the delay in the formation of massive stars observed in numerical simulations, the need for massive, dense cores in order to form massive stars, and the observed correlation between the mass of the most massive star and the mass of the cluster it resides in. Also, our model implies that by the time massive stars begin to form in a core, a number of low-mass stars are expected to have already formed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call