Abstract

Active power filters create sideband harmonics over a wide frequency range around the multiple carrier-frequency harmonics and these can encroach into the low frequency range. This issue is particularly critical when low carrier-fundamental frequency ratios are used such as in aerospace applications, where high fundamental frequencies exist. A multilevel Active Shunt Filter with a low switching frequency is proposed to mitigate the lowest order carrier frequency terms. However low carrier frequencies lead to reference voltage phase delay and attenuation and can introduce significant baseband harmonics. These effects cannot be hidden by employing multiple modulator converters. In order to overcome these problems, a multi-sampled modulation approach is proposed, which allows duty cycle updating (n-1) times per switching period for each H-bridge of one phase of the n-level converter (rather than only once or twice as in the regularly sampled PWM). The proposed modulation approach was combined with predictive current control in order to enhance the system performance. The control loop performance compared to regularly sampled PWM is experimentally verified by employing a five-level ASF in a 400Hz power network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call