Abstract
The properties of positive-branch and negative-branch unstable resonators with variable reflectivity mirrors and several variable internal lenses were investigated both theoretically and experimentally. Design rules for optimized unstable resonators for one or more active elements are derived on the basis of the ABCD matrix formalism. Experiments were performed with a pulsed Nd:YAG system consisting of three 6 in. × 3/8 in. (15.24 cm × 0.95 cm) rods. This system provided a maximum output power of 550 W per rod when a symmetric flat-flat resonator was used. Unstable resonators achieved up to 75% of this maximum value with beam-parameter products between 2 and 10 mm mrad. The beam quality becomes worse as more active elements are used inside the resonator. This deterioration of focusability is caused by spherical aberration in combination with differences of refractive power for r and Φ polarizations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.