Abstract

This paper presents an effective multi-robot motion planner that enables each robot to reach its desired location while avoiding collisions with the other robots and the obstacles. The approach takes into account the differential constraints imposed by the underlying dynamics of each robot and generates dynamically-feasible motions that can be executed in the physical world. The crux of the approach is the sampling-based expansion of a motion tree in the continuous state space of all the robots guided by multi-agent search over a discrete abstraction. Experiments using vehicle models with nonlinear dynamics operating in complex environments show significant speedups over related work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.