Abstract

One potential application of multirobot systems is collective transport, a task in which multiple robots collaboratively move a payload that is too large or heavy for a single robot. In this review, we highlight a variety of control strategies for collective transport that have been developed over the past three decades. We characterize the problem scenarios that have been addressed in terms of the control objective, the robot platform and its interaction with the payload, and the robots’ capabilities and information about the payload and environment. We categorize the control strategies according to whether their sensing, computation, and communication functions are performed by a centralized supervisor or specialized robot or autonomously by the robots. We provide an overview of progress toward control strategies that can be implemented on robots with expanded autonomous functionality in uncertain environments using limited information, and we suggest directions for future work on developing such controllers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.