Abstract

As the community strives towards autonomous multi-robot systems, there is a need for these systems to autonomously form coalitions to complete assigned missions. Numerous coalition formation algorithms have been proposed in the software agent literature. Algorithms exist that form agent coalitions in both super additive and non-super additive environments. The algorithmic techniques vary from negotiation-based protocols in multi-agent system (MAS) environments to those based on computation in distributed problem solving (DPS) environments. Coalition formation behaviors have also been discussed in relation to game theory. Despite the plethora of MAS coalition formation literature, to the best of our knowledge none of the proposed algorithms have been demonstrated with an actual multi-robot system. There exists a discrepancy between the multi-agent algorithms and their applicability to the multi-robot domain. This paper aims to bridge that discrepancy by unearthing the issues that arise while attempting to tailor these algorithms to the multi-robot domain. A well-known multi-agent coalition formation algorithm has been studied in order to identify the necessary modifications to facilitate its application to the multi-robot domain. This paper reports multi-robot coalition formation results based upon simulation and actual robot experiments. A multi-agent coalition formation algorithm has been demonstrated on an actual robot system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.