Abstract
Aerogels hold great promise as a lightweight replacement in materials fields. Dynamic fluorochromic aerogels that possess reversible stimuli responsiveness have been particularly attractive recently for new design opportunities in practical solid-state lighting and wide applications in advanced sensors/probe. In this study, we report a reversibly multiresponsive white-light-emitting (WLE) aerogel prepared with codoped lanthanide, thymidine, and carbon dots. By precisely modulating the stoichiometric ratio of lanthanide complexes and carbon dots, broad-spectrum output from purple to red is obtained, including pure white light (CIE (0.33, 0.32)). The freeze-drying process contributes to the elimination of hydration between water molecules and lanthanide ions, further preventing the quenching of lanthanide luminescence and preserving the high quantum yield (47.4%) of our aerogel. Moreover, the dynamic coordination bond between lanthanide (europium and terbium) and thymidine endows the aerogel with reversible responsiveness upon five different stimuli, including halide anions, metal ions, pH, temperature, and humidity. We envision that our WLE aerogel has considerable potential for use in various fields such as display devices, advanced sensors, and environmentally friendly probes where multiresponsiveness is required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.