Abstract

The development of long-lived electrochemical energy storage systems based on renewable materials is integral for the transition toward a more sustainable society. Supercapacitors have garnered considerable interest given their impressive cycling performance, low cost, and safety. Here, the first example of a chiral nematic activated carbon aerogel is shown. Specifically, supercapacitor materials are developed based on cellulose, a non-toxic and biodegradable material. The chiral nematic structure of cellulose nanocrystals (CNCs) is harnessed to obtain free-standing hierarchically ordered activated carbon aerogels. To impart multifunctionality, iron- and cobalt-oxide nanoparticles are incorporated within the CNC matrix. The hierarchical structure remains intact even at nanoparticle concentrations of ≈70 wt%. The aerogels are highly porous, with specific surface areas up to 820 m2 g-1 . A maximum magnetization of 17.8 ± 0.1 emu g-1 with superparamagnetic behavior is obtained, providing a base for actuator applications. These materials are employed as symmetric supercapacitors; owing to the concomitant effect of the hierarchically arranged carbon skeleton and KOH activation, a maximum Cp of 294 F g-1 with a capacitance retention of 93% after 2500 cycles at 50 mV s-1 is achieved. The multifunctionality of the composite aerogels opens new possibilities for the use of biomass-derived materials in energy storage and sensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.