Abstract

The present work deals with the optimization of micro-WEDM process parameters for machining Ti49.4-Ni50.6 shape memory alloy (SMA) for orthopedic implant application. Effect of micro-WEDM parameters viz. Gap voltage, capacitance, wire feed and wire tension on the response variables such as material removal rate, surface roughness, kerf width and dimensional deviation is determined. As Ti-Ni SMA has fascinating properties and bio-compatibility, have been considered for present work. Nine experiments have been performed on micro-WEDM based on an orthogonal array of Taguchi method. Subsequently, the grey relational analysis (GRA) method is applied to determine an optimal set of process parameters. It is observed that optimized set of parameters A3B3C3D1 viz. 140 V gap voltage, 0.4 µF capacitance, wire feed 30 µm/sec and 30% of wire tension determined by using GRA offers maximum MRR and minimum SR, KW and DD. From the Analysis of Variance, it is seen that the process parameter capacitance is the most significant parameter for multi-response optimization with a percentage contribution of 77.91%. Young’s modulus also checked for biocompatibility. Also, SEM images are taken to confirm the results offering better surface quality. Heat treatment process like annealing is found to be the most suitable to recover shape memory effect of WEDMed samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.