Abstract

This paper presents experimental design approach to process parameter optimization for CW Nd/YAG laser welding of ferritic/austenitic stainless steels in a constrained fillet configuration. To determine the optimal welding parameters, response surface methodology was used to develop a set of mathematical models relating the welding parameters to each of the weld characteristics. The quality criteria considered to determine the optimal settings were the maximization of weld resistance length and shearing force, and the minimization of weld radial penetration. Laser power, welding speed, and incident angle are the factors that affect the weld bead characteristics significantly. A rapid decrease in weld shape factor and increase in shearing force with the line energy input in the range of 15–17 kJ/m depicts the establishment of a keyhole regime. A focused beam with laser power and welding speed respectively in the range of 860–875 W and 3.4–4.0 m/min and an incident angle of around 12° were identified as the optimal set of laser welding parameters to obtain stronger and better welds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.