Abstract

The main objective of this research is to improvethe design and performance of the polyurethane foam-filled thin-walled aluminum grooved circular tubes using multi-response optimization (MRO) technique. The tubes are shaped with the inner and the outer circular grooves at different positions along the axis. For this aim, several numerical simulations using ABAQUS finite element explicit code are performed to study the energy absorption of these structures. The effects of the grooves distance, tube diameter, grooves depth, foam density, and tube thickness are investigated onthecrashworthiness parameters of grooved circular tubes. Finite-element analysis is performed along the lines defined by design of experiments (DOE) technique at different combinations of the design parameters. The MRO is carried out using the mathematical models obtained from response surface methodology (RSM) for two crashworthiness parameters termed as the specific energy absorption (SEA) and the crushing force efficiency (CFE). Finally, by analyzing all the design criteria including theabsorbed energy of tube, themass of tube, the mean crushing load, and the maximum crushing load, the optimal density of polyurethane foam and geometric parameters were obtained through both multi-objective optimization process and Pareto diagram. A comparison of the obtained results indicates the significance of grooves distance and the inner diameter of thetube as the most influential parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.