Abstract
An integrated approach has been applied to predict and optimize multi-performance-characteristics, being optimum thrust force (FTh), torque (M), hole entry delamination (FDen) and hole exit delamination (FDex), in the drilling process of carbon fiber reinforced polymer (CFRP). The drilling operation was performed by using a full factorial design of experiments with two different drill geometry (DG), three diverse levels of spindle speed (n), and feeding speed (Vf). The quality characteristics of FTh, M, FDen, and FDex were smaller the better. Back propagation neural network (BPNN) was first performed to model the drilling process and to predict the optimum drilling responses. Particle swarm optimization (PSO) was executed to attain the best combination of drilling parameters levels that would give optimum performance. The influences of drill geometry, speeds of spindle, and feeding speed on the responses were examined by using the response graphs. In addition, the scanning electron microscope (SEM) photos of the drilled hole are also provided to show the difference of the hole quality before and after optimization. The outcome of the confirmation experiment disclosed that the integration of BPNN and PSO managed to substantially predicted and enhanced the multi-performance characteristics accurately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Science and Technology, an International Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.