Abstract

A pervaporation process for producing anhydrous ethanol from industrial ethyl alcohol (95% v/v) was performed with a commercial PVA/PAN membrane. A central composite rotatable experimental design together with response surface methodology was implemented for studying and modeling the influence of operating conditions in terms of the temperature and the flow rate of the feed on the pervaporation performance, namely, the permeate flux and the separation factor. To obtain a trade-off between the permeate flux and the separation factor, a method for si- multaneous optimization of multiple responses based on an overall desirability function was used. The optimization resulted in a feed temperature of 66 o C and a feed flow rate of 42 L/h. These operating conditions are expected to respond with a permeate flux of 0.107 kg/m 2 h and a separation factor of 40, which correspond to a satisfactory overall desirability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.