Abstract

AbstractTitanium and titanium alloys (Ti6Al4V) are functional materials that have various uses in the marine, chemical, biomedical, aerospace fields because of their unique combination of mechanical and physical properties. Conventional machining of Ti6Al4V is difficult owing to its high hardness, higher chemical reactivity, and lower thermal conductivity. Non-contact operation between tool and work material such as wire electrical discharge machining (WEDM) process was found to be most effective. In the current study, the effect of different input machining parameters of the WEDM process has been studied for Ti6Al4V. Selected input WEDM process parameters based on past literature include pulse on time (Ton), pulse off time (Toff), and current while material removal rate (MRR) and surface roughness (SR) as the response variables. Grey relational analysis (GRA) technique along with Taguchi’s design was used for attaining multiple objectives simultaneously. A validation study was conducted to verify obtained results from optimization. Lastly, results obtained by GRA at optimal parameter settings were compared with nano-alumina powder mixed with dielectric fluid at a concentration of 1 g/l. Improvement in the value of MRR and SR was found by 22.08% and 16.25%, respectively, for Ti6Al4V.KeywordsWEDMTI6AL4VANOVAGRANano-alumina powderOptimization

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.