Abstract

Collagen-induced arthritis (CIA) in mice is an experimental model for rheumatoid arthritis, a human chronic inflammatory destructive disease. The therapeutic effect of neutralizing the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) by an antibody was examined in the mouse disease in a view of deriving a pharmacokinetic/pharmacodynamic (PKPD) model. In CIA mice the development of disease is measured by a total arthritic score (TAS) and an ankylosis score (AKS). We present a multi-response PKPD model which describes the time course of the unperturbed and perturbed TAS and AKS. The antibody acts directly on GM-CSF by binding to it. Therefore, a compartment for the cytokine GM-CSF is an essential component of the mathematical model. This compartment drives the disease development in the PKPD model. Different known properties of arthritis development in the CIA model are included in the PKPD model. Firstly, the inflammation, driven by GM-CSF, dominates at the beginning of the disease and decreases after some time. Secondly, a destructive (ankylosis) part evolves in the TAS that is delayed in time. In order to model these two properties a delay differential equation was used. The PKPD model was applied to different experiments with doses ranging from 0.1 to 100 mg/kg. The influence of the drug was modeled by a non-linear approach. The final mathematical model consists of three differential equations representing the compartments for GM-CSF, inflammation and destruction. Our mathematical model described well all available dosing schedules by a simultaneous fit. We also present an equivalent and easy reformulation as ordinary differential equation which grants the use of standard PKPD software.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.