Abstract

The present investigation aimed to perform an optimisation process of the thermodynamic characteristics for terebinth fruit drying under different drying conditions in a fluidised bed-infrared (FBI) dryer using response surface methodology (RSM) based on a central composite design (CCD) approach. The experiments were conducted at three levels of drying air temperature (40, 55, and 70 °C), three levels of drying air velocity (0.93, 1.765, and 2.60 m/s), and three levels of infrared power (500, 1000, and 1500 W). Energy and exergy assessments of the thermodynamic parameters were performed based on the afirst and second laws of thermodynamics. Minimum energy utilisation, energy utilisation ratio, and exergy loss rate, and maximum exergy efficiency, improvement potential rate, and sustainability index were selected as the criteria in the optimisation process. The considered surfaces were evaluated at 20 experimental points. The experimental results were evaluated using a second-order polynomial model where an ANOVA test was applied to identify model ability and optimal operating drying conditions. The results of the ANOVA test showed that all of the operating variables had a highly significant effect on the corresponding responses. At the optimal drying conditions of 40 °C drying air temperature, 2.60 m/s air velocity, 633.54 W infrared power, and desirability of 0.670, the optimised values of energy utilisation, energy utilisation ratio, exergy efficiency, exergy loss rate, improvement potential rate, and sustainability index were 0.036 kJ/s, 0.029, 86.63%, 0.029 kJ/s, 1.79 kJ/s, and 7.36, respectively. The models predicted for all of the responses had R2-values ranging between 0.9254 and 0.9928, which showed that they had good ability to predict these responses. Therefore, the results of this research showed that RSM modelling had acceptable success in optimising thermodynamic performance in addition to achieving the best experimental conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.