Abstract

Global illumination provides a visual richness not achievable with the direct illumination models used by most interactive applications. To generate global effects, numerous approximations attempt to reduce global illumination costs to levels feasible in interactive contexts. One such approximation, reflective shadow maps, samples a shadow map to identify secondary light sources whose contributions are splatted into eye-space. This splatting introduces significant overdraw that is usually reduced by artificially shrinking each splat's radius of influence. This paper introduces a new, multi-resolution approach for interactively splatting indirect illumination. Instead of reducing GPU fill rate by reducing splat size, we reduce fill rate by rendering splats into a multi-resolution buffer. This takes advantage of the low-frequency nature of diffuse and glossy indirect lighting, allowing rendering of indirect contributions at low resolution where lighting changes slowly and at high resolution near discontinuities. Because this multi-resolution rendering occurs on a per-splat basis, we can significantly reduce fill rate without arbitrarily clipping splat contributions below a given threshold---those regions simply are rendered at a coarse resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.