Abstract

Purpose The purpose was to develop a new magnetic resonance imaging technique for fast temperature monitoring with extended volume coverage. Materials and Methods The Multiple Resolutions Along Phase-Encode and Slice-Select Dimensions (MURPS) method was implemented in both a two-dimensional (2D) spoiled gradient echo (SPGR) sequence and a multishot echo-planar imaging (EPI) sequence. Both modified sequences were used to acquire image data from three slices with variable phase-encode resolution and slice thickness. In the SPGR sequence, a 2D resonant frequency pulse was also implemented to enable imaging within a reduced field of view, and this was used to monitor (at 1.5 T) the temperature changes in a live rabbit and in gel phantoms heated by focused ultrasound. A modified EPI sequence was tested during heating of a phantom undergoing motion. Results The in vivo experiments demonstrated that temperature changes in unexpected locations away from the focal plane, such as near bone structures, could be detected due to the extra volume coverage afforded by the MURPS method. Temperature changes in a moving phantom were resolved using the MURPS EPI sequence with an acquisition rate of three slices every 300 ms. Conclusion The MURPS method enables temperature monitoring over multiple slices without loss of temporal resolution compared with single-slice imaging and, if combined with multishot EPI, enables volume temperature monitoring in moving organs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.