Abstract

Multiresolution terrain models describe a topographic surface at various levels of resolution. Besides providing a data compression mechanism for dense topographic data, such models enable us to analyze and visualize surfaces at a variable resolution. This paper provides a critical survey of multiresolution terrain models. Formal definitions of hierarchical and pyramidal models are presented. Multiresolution models proposed in the literature (namely, surface quadtree, restricted quadtree, quaternary triangulation, ternary triangulation, adaptive hierarchical triangulation, hierarchical Delaunay triangulation, and Delaunay pyramid) are described and discussed within such frameworks. Construction algorithms for all such models are given, together with an analysis of their time and space complexities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.