Abstract
In this paper, we propose a neural network architecture, multiresolution locally expanded high order neural network (MRLHONN) to solve the problem of handwritten numeral recognition. In this recognition scheme, the multiresolution representation of character image is input into a high order neural network (HONN), while in each resolution, only neighboring pixels are expanded to produce high order input. The property of this architecture is that, the local expansion alleviate the problem of large connecting weight set, and the multiresolution representation remedy the inadequacy of local expansion. Two forms of multiresolution representations, quadtree representation and Gaussian pyramid, were used in experiments. The recognition results demonstrate the efficiency of the proposed architecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.