Abstract
We present a framework for low-latency interactive simulation of linear elastostatic models, and other systems arising from linear elliptic partial differential equations, which makes it feasible to interactively simulate large-scale physical models. The deformation of the models is described using precomputed Green's functions (GFs), and runtime boundary value problems (BVPs) are solved using existing Capacitance Matrix Algorithms (CMAs). Multiresolution techniques are introduced to control the amount of information input and output from the solver thus making it practical to simulate and store very large models. A key component is the efficient compressed representation of the precomputed GFs using second-generation wavelets on surfaces. This aids in reducing the large memory requirement of storing the dense GF matrix, and the fast inverse wavelet transform allows for fast summation methods to be used at run-time for response synthesis. Resulting GF compression factors are directly related to interactive simulation speedup, and examples are provided with hundredfold improvements at modest error levels. We also introduce a multiresolution constraint satisfaction technique formulated as a hierarchical CMA, so named because of its use of hierarchical GFs describing the response due to hierarchical basis constraints. This direct solution approach is suitable for hard real-time simulation since it provides a mechanism for gracefully degrading to coarser resolution constraint approximations. The GFs' multiresolution displacement fields also allow for run-time adaptive multiresolution rendering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.