Abstract
The registration of preoperative magnetic resonance (MR) images and intraoperative ultrasound (US) images is very important in the planning of brain tumor surgery and during surgery. Considering that the two-modality images have different intensity range and resolution, and the US images are degraded by lots of speckle noises, a self-similarity context (SSC) descriptor based on local neighborhood information was adopted to define the similarity measure. The ultrasound images were considered as the reference, the corners were extracted as the key points using three-dimensional differential operators, and the dense displacement sampling discrete optimization algorithm was adopted for registration. The whole registration process was divided into two stages including the affine registration and the elastic registration. In the affine registration stage, the image was decomposed using multi-resolution scheme, and in the elastic registration stage, the displacement vectors of key points were regularized using the minimum convolution and mean field reasoning strategies. The registration experiment was performed on the preoperative MR images and intraoperative US images of 22 patients. The overall error after affine registration was (1.57 ± 0.30) mm, and the average computation time of each pair of images was only 1.36 s; while the overall error after elastic registration was further reduced to (1.40 ± 0.28) mm, and the average registration time was 1.53 s. The experimental results show that the proposed method has prominent registration accuracy and high computational efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.