Abstract

A multiresidue analysis method was optimized and validated for simultaneous estimation of 21 synthetic pyrethroid pesticides and their isomers in grape matrix at 10 ng/g and higher levels. The method involves extraction of a 10 g sample with 10 mL ethyl acetate, cleanup by dispersive SPE with primary-secondary amine (25 mg) sorbent, and estimation by GC/MS/MS large volume injection (LVI) through a programmed temperature vaporizer (PTV) injector. The PTV-LVI parameters of the gas chromatograph and the multiple reaction monitoring (MRM) parameters of the ion trap mass spectrometer were optimized for each compound to achieve the highest SIN. For each analyte, the unique and most abundant MRM transition was used for quantification, along with the next most abundant MRM transition for confirmatory identification. The abundance ratio of the confirmatory to quantifier MRMs was used to ensure unambiguous residue monitoring in unknown samples within a 20% tolerance range at the 10 ng/g level. The analytes were separated on a TR-5MS capillary column within a 22 min run time. The method was selective and sensitive and ensured separation of the synthetic pyrethroids from high-boiling matrix components. The LOD and LOQ of the analytes ranged between 0.5 to 3.1 and 2.5 to 10 ng/g, respectively. Linearity of solvent and matrix-matched calibrations between 2.0 and 250 ng/g was established for each compound with r2 > 0.99. Recovery at 10, 25, and 50 ng/g levels of fortification in grapes ranged within 77-115% with associated RSD values (n = 8) up to 20%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.