Abstract

The primary objective of this study was to simultaneously analyze the residues of the most commonly used pesticides, chlorpyrifos-methyl, endosulfan, EPN, and iprodione in the water dropwort, via accelerated solvent extraction (ASE), supercritical fluid extraction (SFE), and conventional solvent extraction (LLE) techniques. Residue levels were determined using GC with electron-capture detection (GC-ECD). The confirmation of pesticide identity was performed by GC-MS in a selected ion-monitoring (SIM) mode. In none of the ASE and SFE techniques were the extraction conditions optimized. Rather, the experimental variables were predicated on the author's experience. The ECD response for all pesticides was linear in the studied range of concentrations of 0.005-5.0 ppm, with correlation coefficients in excess of 0.9991. At each of the two studied fortification levels, the pesticides yielded recoveries in excess of 72% with RSDs between 1 and 19%. The LODs were achieved at a range of levels from 0.001 to 0.063 ppm, depending on the pesticide utilized. The LOQs, which ranged from 0.003 to 0.188 ppm, were lower than the maximum residue limits (MRLs) authorized by the Korean Food and Drug Administration (KFDA). All of the methods were applied successfully to the determination of pesticide residues in the real samples. It could, therefore, be concluded that any of the techniques utilized in this investigation might prove successful, given that the applied extraction conditions are wisely chosen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call