Abstract

AbstractIn multichromophore systems, characterization of electronic structure requires characterization of exciplexes, electron‐hole pairs delocalized over multiple molecules. Computing exciplex binding energy requires an accurate description of both the noncovalent interactions between the chromophores and their excited electronic states. The critical role of basis set selection for accurate description of noncovalent interactions is well known, but for some of the most accurate excited‐state methods, basis set dependence is incompletely understood. In this work, the impact of basis set size and diffuseness on CASSCF/NEVPT2 binding energies is determined for three systems in their lowest singlet excited states: the benzene excimer, the cis‐butadiene‐benzene exciplex, and the benzene‐naphthalene exciplex. We demonstrate that excellent CBS binding energies may be obtained using the moderately‐sized jun‐cc‐pV(D + d)Z and jun‐cc‐pV(T + d)Z basis sets and a simple N−3 model. Repeating this procedure with the N = 3, 4 basis sets from the most diffuse basis set family applied to each system yields a binding energy of 56.6 ± 1.2 kJ/mol for the benzene excimer and binding energies of 11.1 ± 0.5 kJ/mol and 19.2 ± 1.7 kJ/mol for the cis‐butadiene‐benzene exciplex and the benzene‐naphthalene exciplex, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.