Abstract

Dynamic myocardial computed tomography perfusion (CTP) is a novel technique able to depict cardiac ischemia. To evaluate the impact of a four-dimensional noise reduction filter (similarity filter [4D-SF]) on image quality in dynamic CTP imaging, allowing for substantial radiation dose reduction. Dynamic CTP datasets of 30 patients (16 women) with suspected coronary artery disease, acquired with a 320-slice CT system, were retrieved, reconstructed with the deep learning-based algorithm of the system (DLR), and filtered with the 4D-SF. For each case, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in six regions of interest (33-38mm2) were calculated before and after filtering, in four-chamber and short-axis views, and t-tested. Furthermore, six radiologists of different expertise evaluated subjective image preference by answering five visual grading analysis-type questions (regarding acceptable level of noise, absence of artifacts, natural appearance, cardiac contour sharpness, diagnostic acceptability) using a 5-point scale. The results were analyzed using visual grade characteristics (VGC) and intraclass correlation coefficient (ICC). Mean SNR in four-chamber view (unfiltered vs. filtered) were: septum=4.1 ± 2.1 versus 7.6 ± 5.6; lateral wall=4.5 ± 2.0 versus 8.0 ± 4.9; CNRseptum=16.6 ± 8.9 versus 31.7 ± 28; lateral wall=16.2 ± 8.9 versus 31.3 ± 28.9. Similar results were obtained in short-axis view. The perceived filtered image quality indicated decreased noise (VGCAUC=0.96) and artifacts (0.65), improved natural appearance (0.59), cardiac contour sharpness (0.74), and diagnostic acceptability (0.78). The inter-observer variability was excellent (ICC=0.79). All results were statistically significant (P < 0.05). Similarity filtering after DLR improves image quality, possibly enabling dose reduction in dynamic CTP imaging in patient with suspected chronic coronary syndrome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.