Abstract

This paper presents, a multi-physical fuel cell stack model. The stack model is divided into 3 sub-models describing the different physical domains: electrical, fluidic and thermal. The stacking method has been used to model the fuel cell stack from a single cell model. The proposed model has been validated against a 1.2 kW commercial fuel cell stack with excellent agreement between simulation and experimentation. Based on the simulation results, a novel model reduction method is proposed. The reduced model is suitable for real-time simulation purpose. Moreover, a real-time model based fuel cell emulator is introduced. The emulator has 3 real-time computation cores with different rates. The 3 computation cores are interconnected with a digital communication bus. A DC/DC buck converter is designed, in order to receive the model predicted stack power conditions and emulate the real fuel cell stack power output. The experimental test results show that such an emulator is suitable for fuel cell system Hardware-in-the-loop (HIL) applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.