Abstract

Multirate filter banks with block sampling were recently studied by Khansari and Leon-Garcia (1993). In this paper, we want to systematically study multirate filter banks with block sampling by studying general vector filter banks where the input signals and transfer functions in conventional multirate filter banks are replaced by vector signals and transfer matrices, respectively. We show that multirate filter banks with block sampling studied by Khansari and Leon-Garcia are special vector filter banks where the transfer matrices are pseudocirculant. We present some fundamental properties for the basic building blocks, such as Noble identities, interchangeability of down/up sampling, polyphase representations of M-channel vector filter banks, and multirate filter banks with block sampling. We then present necessary and sufficient conditions for the alias-free property, finite impulse response (FIR) systems with FIR inverses, paraunitariness, and lattice structures for paraunitary vector filter banks. We also present a necessary and sufficient condition for paraunitary multirate filter banks with block sampling. As an application of this theory, we present all possible perfect reconstruction delay chain systems with block sampling. We also show some examples that are not paraunitary for conventional multirate filter banks but are paraunitary for multirate filter banks with proper block sampling. In this paper, we also present a connection between vector filter banks and vector transforms studied by Li. Vector filter banks also play important roles in multiwavelet transforms and vector subband coding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.