Abstract

A recent trend in the preparation of carbon dots, optically unique nanomaterials, revolves around the use of readily-available, low-cost natural resources as precursors and their multipurpose applications. In this work, a hydrothermal method for preparing biocompatible carbon dots from radish was developed. The carbon dots were then tested for sensing of Cu2+ and acetic acid vapor. The carbon dots exhibited blue emission under UV illumination with, a quantum yield of 15%. The fluorescence emission was selectively quenched when Cu2+ ions were added, giving a detection limit of 0.16 μM. A paper-based fluorescent sensor was fabricated and shown to sense Cu2+ with a limit of detection of 6.8 μM. The carbon dots were able to determine the Cu2+ concentration in real water samples, with excellent recovery and reliability. The carbon dots were also used as the sensing material in an optical electronic nose, and tested for real-time detection of acetic acid vapor. Using principal component analysis, different ratios of acetic acid to methanol in solution were successfully identified with a detection limit of 15.5%. The acetic acid concentration in a real vinegar sample was also accurately determined. Our results demonstrated that label-free carbon dots derived from readily available radish can be simply used as versatile probes, giving them potential uses in multipurpose sensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.