Abstract

STEAM (stimulated-echo acquisition mode) imaging techniques recently introduced by the authors are demonstrated to provide a versatile tool for improving the parametric specificity in NMR imaging. Stimulated echoes can be excited by a sequence of at least three rf pulses with flip angles of 90 degrees or less. The main characteristics of the STEAM method are based on the great functional flexibility of an imaging sequence comprising three rf pulses unequal to 180 degrees and three intervals prior to acquisition of the data. Major advantages are the easy access to contiguous multiplanar images, to CHESS (chemical-shift-selective) images, and to T1 information. Moreover, the rf power deposition is considerably reduced as compared to spin-echo NMR imaging sequences. Here first in vivo results on human extremities are presented including contiguous multislice images, multiple CHESS images, and spin-lattice relaxation time images calculated from a series of simultaneously recorded T1-weighted STEAM images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call