Abstract

The forest growth model 4C was used to investigate how conversion management of a Scots pine ( Pinus sylvestris L.) stand towards a mixed oak–birch stand would affect stand structural development – and hence biodiversity and productivity – in the long term. For this purpose the 4C model was parameterised for natural regeneration of light demanding species and extended for management of multi-layered stands. A series of structural indicators was selected to describe key factors of forest biodiversity at the stand scale. Two consecutive aspects of Scots pine conversion were tested: (1) the choice of conversion strategy between thinning and gap creation and (2) the choice of conversion regime in terms of cutting cycle, thinning type and pine tree retention. Three simulated conversion strategies aim at the gradual removal of the pine canopy but differ in the spatial organisation of pine cuttings and hence result in different light conditions for regeneration. Only the directed gap creation strategy was able to maintain and increase birch admixture to the stand and to approach natural stand structural development. Simulation of 12 conversion regimes for the directed gap creation strategy indicated that thinning type (from above or from below), pine tree retention at final felling (50% of the standing volume or none) and cutting cycle (6, 9 or 12 years) all significantly influence stand structural development. These effects were clearest for oak development. Birch occurred in a few mixed clusters, but tended to disappear when longer cutting cycles were used. Based on a multi-criteria analysis we conclude that the optimal conversion regime – in which both stand productivity and biodiversity objectives can be combined – implies thinning from above, pine tree retention, and cutting cycles of 6 years. The conceptual validity of the model as well as the applicability of the results are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call