Abstract

BackgroundThe high variations of background luminance, low contrast and excessively enhanced contrast of hand bone radiograph often impede the bone age assessment rating system in evaluating the degree of epiphyseal plates and ossification centers development. The Global Histogram equalization (GHE) has been the most frequently adopted image contrast enhancement technique but the performance is not satisfying. A brightness and detail preserving histogram equalization method with good contrast enhancement effect has been a goal of much recent research in histogram equalization. Nevertheless, producing a well-balanced histogram equalized radiograph in terms of its brightness preservation, detail preservation and contrast enhancement is deemed to be a daunting task.MethodIn this paper, we propose a novel framework of histogram equalization with the aim of taking several desirable properties into account, namely the Multipurpose Beta Optimized Bi-Histogram Equalization (MBOBHE). This method performs the histogram optimization separately in both sub-histograms after the segmentation of histogram using an optimized separating point determined based on the regularization function constituted by three components. The result is then assessed by the qualitative and quantitative analysis to evaluate the essential aspects of histogram equalized image using a total of 160 hand radiographs that are implemented in testing and analyses which are acquired from hand bone online database.ResultFrom the qualitative analysis, we found that basic bi-histogram equalizations are not capable of displaying the small features in image due to incorrect selection of separating point by focusing on only certain metric without considering the contrast enhancement and detail preservation. From the quantitative analysis, we found that MBOBHE correlates well with human visual perception, and this improvement shortens the evaluation time taken by inspector in assessing the bone age.ConclusionsThe proposed MBOBHE outperforms other existing methods regarding comprehensive performance of histogram equalization. All the features which are pertinent to bone age assessment are more protruding relative to other methods; this has shorten the required evaluation time in manual bone age assessment using TW method. While the accuracy remains unaffected or slightly better than using unprocessed original image. The holistic properties in terms of brightness preservation, detail preservation and contrast enhancement are simultaneous taken into consideration and thus the visual effect is contributive to manual inspection.

Highlights

  • Bone age assessment (BAA) is a clinical procedure commonly adopted by pediatrics radiologist to gauge the skeletal development in children and adolescents

  • All the features which are pertinent to bone age assessment are more protruding relative to other methods; this has shorten the required evaluation time in manual bone age assessment using TW method

  • The holistic properties in terms of brightness preservation, detail preservation and contrast enhancement are simultaneous taken into consideration and the visual effect is contributive to manual inspection

Read more

Summary

Introduction

Bone age assessment (BAA) is a clinical procedure commonly adopted by pediatrics radiologist to gauge the skeletal development in children and adolescents. Among all the skeletal bones, the left hand X-ray radiograph is claimed [2] to be the effective skeletal maturity estimation. Diseases of children related to endocrine disorders such as Hypothyroidism Cushing syndrome and constitutional growth retardation; chromosomal disorders such as Trisomy 18 and Turner syndrome; malnutrition such as Skeletal dysplasia and bone mineralization anomalies [3], can be early detected via analyzing the discrepancy between the skeletal age and biological age. Producing a wellbalanced histogram equalized radiograph in terms of its brightness preservation, detail preservation and contrast enhancement is deemed to be a daunting task

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.