Abstract

In this work, ultra-high speed flash white light (FWL) sintering method of copper nanoparticle pastes on silicon wafer substrate, was developed to produce highly conductive and low-cost copper electrodes for crystalline silicon solar cells. FWL sintering of copper nanoparticles on silicon wafer substrate has been regarded to be very difficult, due to its high thermal conductivity (k) compared with that of polymer (PI and PET) substrates. To overcome this limitation, we applied multiple pulsed FWL to sinter copper nanoparticles (Cu NPs) printed on silicon wafer. Furthermore, bimodal Cu NPs with different size were also applied to enhance the packing density of Cu films for highly conductive Cu electrodes. Finally, this work demonstrated that Cu NP-pastes are successfully sintered on crystalline silicon wafer substrate by multiple pulsed FWL irradiations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.