Abstract

Numerical analysis in combination with experimental data for Cr/sup 2+/:ZnSe and Ti:sapphire lasers reveal the following main mechanisms of multiple-pulse generation for Kerr-lens mode-locked solid-state lasers: 1) continuum amplification due to a spectral loss growth for ultrashort or chirped pulses and 2) a bounded perturbation rise for high-energy pulses. The role of such laser parameters as gain saturation and relaxation, saturable and unsaturable loss, self-phase modulation, Kerr-lensing, and pump intensity is analyzed. This analysis provides basic directions for single-pulse stability enhancement and for multiple-pulse generation control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.