Abstract

Operating in today’s turbulent and competitive world marketplaces, manufacturers must find the best production scheme and delivery policy to meet timely client’s multiproduct requirements and minimize the total manufacturing-shipment expenses. This study proposes a two-stage delayed differentiation model for a multiproduct manufacturer-retailer coordinated supply chain featuring the adjustable-rate for making common parts and a multi-shipment policy for transporting finished goods. The aim is to help present-day manufacturers achieve their operational goals mentioned above. The mathematical techniques help us build a specific model to explicitly represent the problem and derive its overall operating expense. Then, the convexity of the total expense is verified by Hessian matrix equations. The differential calculus helps derive the cost-minimized fabrication-shipment decision. This study offers an example to demonstrate the applicability and capabilities of our proposed model numerically. The following crucial information has been made available to the managers to facilitate their operating decision makings: (1) the problem’s best fabrication-shipment policy; (2) the collective influence of various common part’s completion rates and values on the problem’s total expenses and optimal fabrication-shipment policy; (3) the impact of various adjustable-rates in stage one on utilization and stage one’s uptime; (4) the details of cost contributors to the problem; and (5) the collective impacts of critical features on the problem’s performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call