Abstract
AbstractIn this paper, we propose a new approach for the analysis and the decomposition of digital curves simultaneously into straight and circular parts. Both digital primitives are defined using a thickness parameter. Our method relies on the notion of Tangential Cover [8] which represents digital curves by the set of maximal primitives. The nature of the Tangential Cover allows for fast computation and makes our approach easily extendable, not only to other types of digital primitives, but also to thick digital curves [7]. The results are promising.KeywordsDigital geometry α-thicknessmulti-primitivetangential Coverpolygonalization
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.