Abstract
Irregular Repetition Slotted Aloha (IRSA) is one candidate member of a family of random access protocols to provide solutions for massive parallel connections in the Internet of Things (IoT) networks. The key features of this protocol are repeating the transmitted packets several times and using Successive Interference Cancellation (SIC) at the decoder to resolve the collisions, which dramatically increases the performance of Slotted ALOHA. Motivated by multiple previous studies of IRSA performance in different settings, we focus on the scenario of an IoT network where the packets of different nodes are received with different powers at the base station, either per design due to different transmission power, or induced by the fact that the nodes are at different distances from the base station. In such a scenario, the capture effect emerges at the receiver, which in turn enhances the protocol performance. We analyze the protocol behavior using a new density evolution which is based on dividing nodes into classes with different powers. By computing the probability to decode a packet in the presence of the interference, we explore the achievable throughput and its associated gain and show the excellent performance of Multi-Power IRSA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.