Abstract

AbstractThe transcription factor C/EBPα is an important mediator of granulocyte differentiation and regulates the expression of multiple granulocyte-specific genes including the granulocyte–colony-stimulating factor (G-CSF) receptor, neutrophil elastase, and myeloperoxidase. Indeed C/EBPα knockout mice display a profound block in granulocyte differentiation. To study this block in granulocytic differentiation in more detail, retroviral vector-mediated transduction of a dominant-negative retinoic acid receptor was used to establish hematopoietic growth factor–dependent, lympho-myeloid progenitor cell lines from the fetal livers of both the C/EBPα knockout animals (C/EBPα(−/−)) and their heterozygous littermates (C/EBPα(+/−)). Surprisingly, the C/EBPα(−/−) cell lines displayed significant spontaneous granulocytic differentiation, and this differentiation was markedly enhanced when the cells were stimulated with granulocyte macrophage (GM)–CSF. This GM-CSF–mediated differentiation was associated with the up-regulation of G-CSF receptor mRNA, and the combination of GM-CSF and G-CSF generated more than 95% mature neutrophils in the C/EBPα(−/−) cultures. The addition of all-transretinoic acid also enhanced this granulocytic differentiation of the cultured C/EBPα(−/−) cells, indicating that the activated retinoic acid receptors can enhance granulocytic differentiation through a molecular pathway that is independent of C/EBPα. These studies clearly indicate that terminal granulocytic differentiation associated with the up-regulation of C/EBPα-responsive genes can occur in the absence of C/EBPα, and they indicate the existence of multiple independent molecular pathways potentially used by primitive hematopoietic precursors that can lead to the development of mature granulocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.