Abstract

This paper discusses the suitability of using a multiport amplifier (MPA) for a power section of space telecommunication payloads with power flexibility requirements. The performances of an MPA-based architecture are compared to those of a classical amplification architecture having one power amplifier per beam. This study is based on a 4 times 4 Ka-band MPA composed of four paralleled traveling-wave tube amplifiers (TWTAs). First, a static model of the MPA has been extracted from conventional characterizations. Second, the MPA has been characterized in a realistic environment for telecommunication operation. The good agreement between measured and simulated data serves to validate the MPA model. Once the model has been validated, exhaustive simulations are performed to compare the performances of the MPA-based and classical architectures in terms of power consumption and the TWTA's saturation power. As a result, the MPA approach proves to be an interesting solution because of its greater flexibility, lower power consumption, and lower saturation power required by the TWTAs

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.