Abstract

Abstract Novel electronic states are hallmarks of strongly correlated f-electron systems. The spin–orbital coupled degrees of freedom can lead to an exotic type of multipole hidden order (HO). A well-known HO is observed at the 17.5 K phase transition in URu 2 Si 2 , which is a long-standing mystery since its discovery in 1985. The dominating itinerant character of the 5f electrons complicates a theoretical description of this phenomenon. Here we review recent progress on a first-principles theoretical approach that allows catching the itinerant feature of f electrons. We show that in the itinerant 5f-electron model of URu 2 Si 2 , the most divergent multipole susceptibility indicates an instability to a triakontadipole order, with a doubly degenerate E-type symmetry. This itinerant-type multipole order is consistent with key features in the HO state, including the broken fourfold rotational symmetry observed in recent experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.