Abstract

Within the framework of a simple electrostatic model, as compared to recent experimental results, we here discuss the stability of very weakly bound molecular negative ions. In contrast with the case of conventional valence anions, the excess electron is then located in a very diffuse orbital and is mainly bound by electrostatic dipolar, quadrupolar, and polarization forces, at large distances from the neutral molecular core. By fitting a single repulsion parameter of the model to the available experimental data, it is possible to make quantitative predictions of the excess-electron binding energies in these species. Critical values of the dipole moment, quadrupole moment or polarizability required for the observation of stable multipole-bound negative ions are predicted and compared to available experimental data and ab initio calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.